

CCN Forwarding Engine Based on Bloom Filters

M. Tortelli, L. A. Grieco, G. Boggia,

Dipartimento di Elettrotecnica ed Elettronica (DEE)

Politecnico di Bari - Italy

CFI 2012

The 7th International Conference on Future Internet Technologies 11 – 12 Sept. 2012 Imperial Palace Hotel, Seoul, Korea

- ✓ From "WHERE" to "WHAT"
- ✓ Content Centric Networking (CCN)
- ✓ Bloom Filter Basics
- ✓ Update Times Evaluation
- ✓ The proposed Forwarding Engine
- ✓ Conclusion
- ✓ Future works

telematics From "WHERE" to "WHAT" ... ARPAnet (1969) ... INTERNET (1971) ... 2012 TCP/IP ... INTERNET (1971) ... 2012 YHost Centric ... Host Centric

✓ Conversational Model

However...the **SCENARIO** is changed!!

telematics

From "WHERE" to "WHAT"

Future Internet Goals:

- Simplify the usability
- Increase the efficiency
- Secure the privacy
- Enhance the media experience

of the users

tor change

CONTENTS as a **"PRIMITIVE"**

telematics

Content Centric Networking (CCN)

TARGET = Internet-scale deployment of CCN

... PROS

Servers load reduction

Improvement of the *QoE* perceived by users

Security issues independent of contents locations

Compliant with the existing infrastructure

NAMING

EVERY CONTENT OBJECT MUST BE UNIQUELY IDENTIFIABLE!

HIERARCHICAL youtube.com/video/Olympics/London_2012	FLAT LABEL 18D73B01_598A6DFF9117CEDA	
Human Readable	Self-certifying	
Simple Aggregation	Easily Globally Unique	
Longest –Match Lookup	More Flexible	
Lack of Global Uniqueness	No Aggregation	
	Need for External Binding	

		SCALABI	LITY	
BGP TODAY		≈ 4·10 ⁵ routes : Routing Informa	in a BGP ation Base	
	CONTENT-BASED ROUTING PROTOCOL		Google repo of 10 ¹² un need at lea to account content obj	orts a lower bound ique URLs \rightarrow we ast O(10 ¹²) routes for all the unique ects on the Web!!
				Û
Lookup times will degrade forwarding performances!				

Universal

Caching Capability

Content Centric Networking (CCN)

SIGNALING OVERHEAD

Every network entity can cache every content it forwards in order to satisfy subsequent requests.

Reduction of contents retrieval times thanks to nearest copies with respect to original servers.

Load reduction for original content providers.

BUT...

Discovering near contents outside the ordinary paths towards the original servers requires the control plane to have a capillary knowledge of the contents in the neighborhood.

Contents in caches can change very frequently, thus leading to a considerable signaling traffic if we plan to keep track of their status.

A simple "Interest Flooding" strategy or an opportunistic discovery along the known paths towards the original servers could be inefficient.

telematics

Bloom Filter Basics

BLOOM FILTERS are data structures often used to efficiently perform

membership queries on large data sets.

- **m**: filter length [bit].
- **n**: # of items in the considered universe.
- **k**: # of hash functions employed to map the items.

$P_{fp} = [1 - (1 - 1/m)^{kn}]^k \approx (1 - e^{-kn/m})^k$	False Positive Probability	
$k_{opt} = \frac{m}{n} \ln 2$	Optimum number of Hash Functions	
$P_{\min} = (1/2)^k = 0.6185^{\frac{m}{n}}$	Minimum False Positive Probability	
$m = -\frac{n\ln(P_{fp})}{(\ln 2)^2}$	Filter Length Under Optimum Hypotheses	

telematics

Bloom Filter Basics

Bloom Filters could easily find their role in a **CCN Forwarding Engine!**

Bloom Filter Basics

100Gbps Ethernet _______ Forward an Ethernet frame in few ns!

We need to allocate BFs in fast on-chip memories like **TCAM** or

SRAM.

Max dimension for SRAM available nowadays: ~ **25 MB**

Scenario	Content Catalog (n)	BF Length (m) with Pfp = 0.1%
Web	10 ¹²	~ 1.8 TB
UGC	10 ⁸	~ 180 MB
File Sharing	10 ⁵	~ 180 kB
VoD	10 ⁴	~ 18 kB

$$m = -\frac{n\ln(P_{fp})}{\left(\ln 2\right)^2}$$

UGC = User Generated Contents

VoD = Video on Demand

The *false positive probability* of a BF in a CCN node is influenced by:

- The *load factor* of the filter (the proportion of 1s with respect to 0s);
- The *staleness* of the collected information.

Every node should periodically send its updated BF

Potential uncontrolled occupation of the links bandwidth!

How frequently these updated BFs should be sent?

Update Times Evaluation

We conducted simulations based on a model for general network of

caches with a Least Recently Used (LRU) replacement policy *.

MODEL PARAMETERS		
$r_{i,v} = \lambda_{i,v} + \sum_{v':i \in R(v',v)} m_{i,v'}$	Incoming Request Rate for the i- th content at node v .	
$m_{i,v} = r_{i,v} \cdot (1-q_{i,v})$	Miss Rate for the i- <i>th</i> content at node <i>v</i> .	
$q_{ m i,v}$	Probability for the i- <i>th</i> content to be present in the cache of node v at a random point in time.	
$\vec{q_v} = contents(\vec{p_v}, v)$	Function that models a single LRU cache.	
$p_{i,v} = \frac{r_{i,v}}{\sum_{j=1}^{N} r_{j,v}}$	Relative portion of requests for the i- th content at node v .	

$\lambda_{i,v}$ = Poisson stream of exogenous requests

Update Times Evaluation

SIMULATION SETTINGS		
Topology	Random Graph with 50 nodes (v), 150 links and an average path length of 3.22 hops.	
Content Catalog	104	
Popularity Distribution	Zipf-like ($\alpha = 0.65$)	
Cache Size [contents]	500	
Cache-to-Catalog Ratio	0.05	
Requests Generation Rate	1 every second for each node	
Request Interarrival Times	Exponential	
Update Thresholds [% of cache size]	10, 20, 30	

Update Times Evaluation

SIMULATION RESULTS			
Threshold	Min [s]	Avg [s]	Max [s]
10%	496	1004	1152
20%	630	1404	1512
30%	745	1692	1800

Obtained from the node with the highest degree (i.e. 12 interfaces)

We have short update times even in the presence of relaxed conditions:

- Requests are forwarded using only the shortest paths towards the original content servers (no flooding);
- The content catalog (10⁴) is considerably smaller (10¹² contents in a Web scenario);
- The Cache-to-Content Catalog ratio is bigger with respect to real scenarios.

OUR PURPOSE = Minimizing both signaling overhead and flooded Interests

STABLE BLOOM FILTER *

- \checkmark Same structure of a Counting Bloom Filter (*d* bit for every cell);
- \checkmark Capacity to reinforce newest information as well as randomly delete stale ones (decrementing *P* cells).

* F. Deng, D. Rafiei. Approximately detecting duplicates for streaming data using stable bloom filters. In Proc. of ACM SIGMOD, Chicago, IL, USA, 2006

OUR PURPOSE = Minimizing both signaling overhead and flooded Interests

* F. Deng, D. Rafiei. Approximately detecting duplicates for streaming data using stable bloom filters. In Proc. of ACM SIGMOD, Chicago, IL, USA, 2006

OUR PURPOSE = Minimizing both signaling overhead and flooded Interests

SMALL BLOOM FILTER

Hierarchical Names make easy:

- ✓ Names Aggregation;
- \checkmark Regulation of name fields.

Separate BFs for each name field until a tunable name depth (L)...

OUR PURPOSE = Minimizing both signaling overhead and flooded Interests

SMALL BLOOM FILTER

Dimensioning Issues...

The estimation of the catalog population for each field is not so trivial!

From the BNL* (Billiruglu & Neufeld List, 2007)

~ **2500 word families** cover the 90% of the English Language!

OUR PURPOSE = Minimizing both signaling overhead and flooded Interests

SMALL BLOOM FILTER

Dimensioning Issues...

The estimation of the catalog population for each field is not so trivial!

Example

EASLY EXCHANGABLE

between nodes!

```
LESS OVERHEAD!
```


NAMES AGGREGATION

MEANS

INACCURACY

BUT...

- \checkmark A greedy forwarding policy could be implemented even with a partial name match;
- \checkmark We can compensate for this inaccuracy thanks to the complete information hold in the larger SBFs.

FORWARDING SCHEME

The road ahead ...

Develop a customizable CCN simulator to highlight the pros and cons of the proposed forwarding strategy

> Stress the attention on the scalability issues that could arise in the presence of a content catalog much greater than 10⁶ contents, as well as on the comparison between hierarchical and flat label names

> > Evaluate the effects of the aggregation and propagation of BFs within different sized neighborhoods (in terms of number of hops from the nodes advertising their contents)

> > > Refine and test the proposed Two-Level Forwarding Engine using a large scale test-bed (such as PlanetLab)

Thanks a lot for your kind attention !!!

Michele Tortelli

- Telephone number: +39 080 5963301
- Fax: +39 080 5963410
- > Web: http://telematics.poliba.it/tortelli
- E-mail: m.tortelli@poliba.it
- Personal e-mail: tortellimichele@gmail.com
- Skype contact: michele.tortelli

Politecnico di Bari

via Orabona, 4 - 70125 Bari (Italy)